Схемы разделительных фильтров акустических систем. Расчёт разделительных фильтров. Уроки труда, или методика создания акустических систем


Автор уже много лет профессионально занимается конструированием и производством эксклюзивных акустических систем. В этой статье он рассказывает о конструкции трёхполосного стереокомплекта АС, где установлены высококачественные динамические головки известных зарубежных производителей. В кроссовере применены также высококачественные компоненты, улучшающие верность воспроизведения музыкальных записей различных жанров.

Эта акустическая система была одним из экспонатов выставки "Российский Hi-End 2015", где вызвала интерес многих посетителей и заслужила высокие оценки специалистов и любителей при демонстрационных прослушиваниях.

Проект этой акустической системы (АС) был начат давно, но доделать первую пару удалось только к 15-й выставке "Российский Hi-End" в ноябре 2015 г. Недавно была сделана вторая пара с небольшими изменениями: упрощён корпус и немного изменён кроссовер по результатам прослушивания и измерений.

В АС применены динамические головки: высокочастотная Morel ET338-104 , среднечастотная Scan-Speak 15M/ 4531K00 и низкочастотная SEAS H1215 .

ВЧ-головка израильской фирмы с мягким куполом отличается очень мощной магнитной системой и малыми нелинейными искажениями. Несмотря на наличие магнитной жидкости в зазоре, она обладает динамичным звучанием и хорошо передаёт звучание медных и ударных инструментов.

СЧ-головка диаметром 15 см датской фирмы Scan-Speak в серии Reve-lator стала одной из лучших среди СЧ-головок всех производителей. Её подвижная система отличается большим линейным ходом (именно для СЧ-головки) и допускает относительно низкую частоту разделения. Нелинейные искажения в рабочей полосе частот очень малы: магнитная система имеет два линеаризующих медных кольца. Бумажный диффузор имеет специальные надрезы, обеспечивающие более ровную АЧХ в конце поршневого режима.

НЧ-головки диаметром 18см (6,5 дюйма) норвежской фирмы SEAS - обычные с бумажным диффузором, пропитанным с наружной стороны. Пропитка обеспечивает ровный спад АЧХ выше рабочей полосы частот. В каждой АС установлены две таких головки в общем объёме. Акустическое оформление - с фазоинвертором (ФИ).

Две головки размером 6,5 дюйма имеют площадь диффузора немного больше, чем одна восьмидюймовая головка. Также у H1215 область поршневого режима простирается до частоты 800 Гц, а у головки размером 8 дюймов той же фирмы поршневой режим заканчивается на частотах выше 600 Гц. У H1215 параметр ускорения Bl/M ms = 496, а у восьмидюймовой головки он обычно не превышает 350.

Требуемый объём для НЧ-головок и частоту настройки ФИ можно оценить в программе на Exel (freeware) Unibox (автор - датчанин Kristian Kougaard), заложив в неё параметры головок из перечня характеристик (datasheet). Эта простая и удобная программа позволяет учесть многие параметры головок, различные конфигурации и рассчитать различные оформления. При расчётах нужно учитывать предположительное активное сопротивление катушки фильтра НЧ-звена.

Для двух H1215, соединённых параллельно, расчёты показывают оптимальный объём примерно 32 л, а при диаметре трубы фазоинвертора 66 и длине 116 мм частота настройки ФИ - около 43 Гц. Эти размеры соответствуют размерам готового фазоинвертора AH-4 китайского производства. Впоследствии труба ФИ была обрезана до длины 100 мм. Реальная частота настройки стала около 44 Гц.

В прототипе АС НЧ-головки были установлены каждая в свой отсек, что дало возможность корректно провести измерения.

Чертежи корпуса и его деталей (рамка для ткани - гриль) показаны на рис. 1 и 2.

Рис. 1. Чертежи корпуса и его деталей

Рис. 2. Чертежи корпуса и его деталей

Корпус выполнен из материала MDF (иногда применяют транслит МДФ - мелкодисперсионная фракция из древесины). Передняя панель и основание имеют толщину 25 мм, остальные панели - 16 и 20 мм. Корпус отделан шпоном и крепится к съёмному основанию, покрашенному в чёрный цвет. АС рекомендуется устанавливать на шипы, для чего в основании предусмотрены стальные втулки с резьбой.

Когда акустическая система проектируется с нуля, могут понадобиться макетные корпуса для отработки конструкции, но в этом случае (к выставке) было решено заказать сразу чистовой корпус в шпоне.

Наклонная перегородка между отсеками СЧ и НЧ в Ас сделана для частичного подавления вертикальной стоячей волны в корпусе и для уменьшения объёма отсека СЧ. При горизонтальной перегородке этот отсек получался слишком большим, а для получения необходимого объёма отсека нЧ приходилось увеличивать общую высоту АС, которая и так была больше метра (1052 мм без шипов). Отсек СЧ заполнен синтепоном более чем на 50 %, но пространство около СЧ-головки свободно от синтепона.

Для акустических измерений необходим измерительный комплекс. В простейшем виде - это микрофон, звуковая карта компьютера и компьютерная программа для электроакустических расчётов. Я пользуюсь измерительным комплексом LMS американской фирмы LINEARX. Он не выпускается в настоящее время, но очень удобен для измерений и позволяет измерять АЧХ в неподготовленном помещении. Комплекс включает в себя микрофон, плату для компьютера и программное обеспечение.

Существуют и другие средства измерений, например, Clio итальянской фирмы Audiomatica SRL или MLSSA Однако для любительских измерений подобные системы очень дороги.

Более простым средством является программа LoudSpeaker LAB 3 шведского автора, но она не бесплатная. Программа позволяет использовать звуковую карту компьютера с подходящим для этих целей микрофоном.

Законченным и относительно недорогим решением является ATB PC PRO немецкой фирмы Kirchner. Несмотря на немного примитивную реализацию эта компьютерная программа позволяет проводить измерения, достаточные для изготовления качественных АС.

На рис. 3 показаны АЧХ динамических головок, измеренные по звуковому давлению, а на рис. 4 - характеристики их импеданса. АЧХ измерены с расстояния 0,5 м по оси излучения соответствующих головок. Пунктирная линия - для ВЧ-головки, штрихпунк-тирная - для СЧ-головки, сплошная - для НЧ-головки.

Рис. 3. АЧХ динамических головок, измеренные по звуковому давлению

Рис. 4. Характеристики импеданса динамических головок

АЧХ по звуковому давлению сглажены для удобства применения. Система не тарирована для измерения абсолютного значения звукового давления, поэтому графики не соответствуют заявленной чувствительности головок. Уровень сигнала выбирается исходя из удобства измерений так, чтобы не мешали шумы системы и не было больших искажений.

После измерений графики экспортируются в программу-симулятор, которая позволяет смоделировать АЧХ и другие параметры системы с учётом фильтра. Программа также позволяет рассчитать элементы фильтров кроссовера и оптимизировать АЧХ. Я пользуюсь программой LspCAD 5.25 автора Ingemar Johansson. Она является достаточно мощной, но не очень сложной в освоении. Существует более поздняя версия, но она недостаточно удобна.

Есть ещё очень мощная программа LEAP того же LINEARX, что производил LMS. Она более совершенна, но тяжела в использовании.

Готовый результат моделирования представлен на рис. 5. Верхний график - суммарная АЧХ на оси ВЧ-головки в бесконечности (толстая линия) и АЧХ головок со своими фильтрами (тонкие линии). АЧХ нельзя назвать ровной, но это не критично, так как симулятор показывает более ровную АЧХ на оси на 5 град. выше оси ВЧ-головки. Нижний график - характеристика импеданса АС и головок с соответствующими фильтрами.

Рис. 5. Результат моделирования

Схема фильтров кроссовера для одного канала АС показана на рис. 6.

Рис. 6. Схема фильтров кроссовера для одного канала АС

В кроссовере на НЧ использован фильтр первого порядка (катушка индуктивности L4). Полоса СЧ также обрезана сверху и снизу фильтром первого порядка (C2 и L2). Для полосы ВЧ применён фильтр второго порядка (dL1).

Акустический и электрический порядки спада фильтров обычно не совпадают, так как в полосе задержания фильтра АЧХ головок имеют собственные неравномерности. Поэтому реальные спады вблизи частот разделения в полосах НЧ и близки к первому, в полосах СЧ сверху и ВЧ - ближе к третьему из-за собственных спадов АЧХ головок, которые добавляются к спаду, обеспечиваемому электрическим фильтром.

В АС все головки подключены син-фазно. Обычно басовые головки не удаётся свести фильтром первого порядка и без переполюсовки - чаще применяется второй порядок. Здесь это удалось ценой большей неравномерности суммарной АЧХ. Низкий порядок фильтров означает более широкие области совместной работы головок и лепестковые диаграммы направленности в вертикальной плоскости с узкими центральными лепестками. Но АС с фильтрами низких порядков звучит более естественно, слитно и живо.

Цепь R6C5 совместно с катушкой L4 образуют фильтр-пробку, вырезающий небольшой выброс на АЧХ басовых головок, который слышен, если не принять специальных мер. Одновременно эта цепь немного уменьшает наклон АЧХ выше частоты разделения, поэтому, чтобы скомпенсировать это уменьшение наклона, введена цепь R7C6.

Контур L5C7 (как режектор) устраняет подъём в импедансе басового звена на частотах около 75 Гц. Это нужно для устранения пика на АЧХ громкоговорителя, который маскирует нижний бас. Это явление называется "накачкой", термин предложен С. Д. Батем. Большинство производителей АС не учитывают это явление, хотя существуют проекты АС, где применяется подобная цепь, выравнивающая импеданс.

В кроссовере применены полипропиленовые конденсаторы, причём С1 и С2 - Mundorf Supreme (дорогие, чёрного цвета - см. фото далее). Цена конденсаторов С2, СЗ (сборки из четырёх штук) соизмерима с ценой СЧ-головки, но в хорошем тракте разница в звучании АС с такими конденсаторами заметна. Для экономии его можно заменить другим - Mundorf МСар (белого цвета). Можно использовать частично Supreme, а частично MCap (как С4). Конденсатор С7 - неполярный оксидный (Mundorf Bipolar).

Катушки - обычные из обмоточного провода, кроме L2 (Mundorf CFC16), которая намотана ленточным обмоточным (JBSPL проводом. Диаметры провода для катушек L1 и L3 (Mundorf L100) - 1 мм, для L4 (Mundorf L140) - 1,4 мм, для L5 (Mundorf L71) - 0,71 мм (сопротивление около 4,5 Ом). Катушка L5 может быть на ферромагнитном сердечнике, и её сопротивление может отличаться, в этом случае сумма сопротивления катушки L5 и дополнительного резистора (на схеме не показан) должна быть приблизительно равна 4,5 Ом. Резисторы в кроссовере - металлооксидные (Mundorf MResist MOX).

На фото рис. 7 кроссовер показан в сборе. Детали монтируют на выводах навесным монтажом и крепят термоклеем к панели из МДФ, фанеры или другого материала толщиной 3...6 мм. Фильтры собраны на двух панелях: вместе для СЧ-ВЧ и отдельно - для НЧ. Панель фильтра НЧ крепится к боковой стенке АС в отсеке нижней НЧ-головки, а панель фильтров для СЧ и ВЧ головок - к боковой стенке в отсеке верхней НЧ-головки. Отверстия, через которые проходят провода от фильтров к СЧ- и ВЧ-головкам, должны быть загерметизированы пластилином.

Рис. 7. Кроссовер в сборе

Посмотрим, какие реальные импеданс и АЧХ обеспечивает данный кроссовер.

На рис. 8 показана АЧХ АС в комнате, снятая с расстояния 1 м по оси ВЧ-головки. Видно, что она похожа на продукт моделирования (см. рис. 4), но оказалась более ровной, чем предсказывал симулятор. Такое часто бывает из-за того, что динамические головки по умолчанию при моделировании и измерениях считаются минимальнофазовыми, а в реальности, за пределами поршневого режима, это может не выполняться.

Рис. 8. АЧХ АС

Поэтому сразу смоделировать "правильный" фильтр не получится. Требуются изменения в фильтрах и дополнительные измерения и прослушивания.

Реально АЧХ (сглаженная в треть октавы) укладывается в отклонение ±3 дБ, если не обращать внимания на АЧХ ниже 300 Гц, где заметно влияет помещение.

В частности, из-за интерференции прямого от АС и отражённого от пола сигналов у микрофона фиксируется спад АЧХ в области около 200 Гц. При удалении от АС этот эффект нивелируется. Локальные максимумы на частотах 34 и 60 Гц обусловлены стоячими волнами, которые воспринимает микрофон в данной точке (на 34 Гц - между стенами, на 60 Гц - между полом и потолком). Максимум в области 140 Гц возник из-за отражения от близко стоящей мебели.

Учитывая незначительное сглаживание характеристики, результат - вполне достойный.

На рис. 9 показана частотная характеристика импеданса АС. Она практически совпадает с рассчитанной при моделировании. Небольшой пик на 180 Гц - неподавленная вертикальная стоячая волна в отсеке НЧ. Метки на 100 Гц и 1 кГц генерируются программно, в реальности их нет.

Рис. 9. Частотная характеристика импеданса АС

Видно, что импеданс в рабочей области частот не падает ниже 3,3 Ом и не превосходит 7,2 Ом (кроме низкочастотного горба фазоинвертора). Систему можно считать номинально четырёхомной, и она может использоваться с ламповым усилителем, так как имеет довольно ровный импеданс и достаточно высокую чувствительность.

Технические характеристики АС

Номинальное сопротивление, Ом........................ 4

Чувствительность при 2,83 В, дБ...........................88

Полоса воспроизводимых частот при неравномерности ±3 дБ, Гц.........40...20000

На фото рис. 10 показан первый стереокомплект АС (корпуса по краям стенда), изготовленный и представленный на выставке "Российский Hi-End" в 2015 г. По мнению многих посетителей, при средней стоимости комплектующих и изготовления качество отделки корпусов достаточно высокое, а звучание АС оценено как сбалансированное и естественное на многих музыкальных жанрах, хотя, нужно признать, фонограммами "тяжёлого металла" или "рока" автор там не располагал...

Рис. 10. Стереокомплект АС

Литература

1. Morel ET338-104. - URL: http://www. morelhifi.com/product/et-338-104/(21.04.16).

2. Scan-Speak 15M/4531K00. - URL: http:// www.scan-speak.d k/datasheet/pdf/ 15m-4531k00.pdf (21.04.16).

3. SEAS H1215 CA18RNX. - URL: http:// www.seas.no/index. php?option=com_conte nt&view = article&id = 340:h1215-08-ca18rnx&catid=44&Itemid=461 (21.04.16).


Дата публикации: 14.08.2016

Мнения читателей
  • Георгий Крылов / 14.06.2017 - 12:17
    Там в схеме опечатка. R6 должно быть не 2.2 ома, а 22 ома.
  • Георгий Крылов / 30.03.2017 - 00:23
    Там в схеме фильтра опечатка. R6 не 2.2Ом, а 22. Владимиру: катушка L3 намотана проводом 1мм. Все катушки Мундорф. Суммарное сопротивление R5L3 около трех Ом. Из-за того, что в "Радио" перерисовали схему по несуществующему ГОСТу несуществующей страны, там появилась ошибка и исчезли мои примечания по типу и характеристикам элементов.
  • Георгий Крылов / 08.10.2016 - 03:06
    L3 - Мундорф L100 - сопротивлени где-то 0.2-.3 ома. Важнее сопротивлене катушки L5, ее сопротивление 4.5 ома. У меня в материалах статьи была схема с данными элементов, но редакция перерисовывает схему по ГОСТУу экс-СССР, и заставить ее сохранить мою схеиу я не мог. Правда, в тексте есть названия и параметры элементов.
  • Владимир / 19.08.2016 - 12:26
    Автор хорошо описал НЧ звено фильтра. ВЧ звено описаний не требует. А вот конструкция СЧ звена порождает некоторые вопросы. Цепочка R5C4L3, видимо, используется для подавления горба 4,5 – 5 кГц на АЧХ СЧ головки? Ведь частота резонанса последовательного колебательного контура C4L3, согласно моим подсчетам, примерно 4,5 кГц. Резистор R5 изменяет добротность контура, регулируя глубину режекции. А вот какое суммарное сопротивление R5L3 ? Это важно при изготовлении катушки. И не лучше ли при расчете катушки указать необходимый номинал ее сопротивления и изготовить катушку уже нужной добротности?


Предлагаю обсудить тему активных фильтров для АС . Просьба высказаться тех, кто имеет практический опыт изготовления и прослушивания таких фильтров , а я покажу, что получилось у меня.

Активные фильтры , на мой взгляд, предпочтительны именно двухполосные, но для трехполосных АС. Частота раздела двухполосных АС всегда находится в области максимальной чувствительности слуха – несколько кГц т. к. пищалки не могут работать до частоты 100…500 Гц, а басовики из-за большого диаметра диффузора выходят из поршневого диапазона и на частотах 4…6 кГц работают неважно.
Широкополосники – компромисс и для них желательны костыли сверху или снизу.

Итак, на частотах раздела порядка 2 кГц прилично работают пассивные фильтры , а при работе микросхем на этих частотах, а особенно порядка 6 кГц (раздел между СЧ и ВЧ), могут возникнуть трудности. На частотах раздела в сотни Гц обычные микросхемы в активных фильтрах работают очень хорошо.
Итак, делим звуковой диапазон на НЧ и СЧ-ВЧ на частотах 100…500 Гц, а СЧ-ВЧ делим простейшим пассивным фильтром первого порядка.


На фото собранной платы (вверху) впаяны не все зажимы – просто они закончились.
Питание +-12…15 В. На схеме не указаны конденсаторы по питанию.
Настройка по постоянному току не требуется.

Изыскания и испытания

У меня есть динамики, которые я хочу использовать в НЧ звене, в штатных колонках был фильтр, с которым они работали до 150 Гц, при этом катушка пассивного фильтра была 7,5 мГн, конденсаторы соответствующей ёмкости. Намотать такие катушки для динамика 4 Ом проблематично, качественные неполярные конденсаторы очень большой ёмкости весьма дороги, поэтому я решил сделать активные фильтры.


Измеренная АЧХ моих динамиков

Кроме того активные фильтры незаменимы при значительной разнице в чувствительности головок, они позволяют использовать низкочувствительные НЧ динамики с высокочувствительными СЧ-ВЧ головками.
Из АЧХ головки видно, что нет смысла ловить микроны и добиваться именно 150 Гц, вполне годится 100…250 Гц.

Окончательная подстройка должна производиться при прослушивании собранных колонок и измерении с помощью микрофона. Такую подстройку проще осуществить именно активными фильтрами, в чем я и убедился при настройке фильтров.
Сначала я снял ЧХ фильтра с рекомендованными номиналами деталей, вот что получил.


АЧХ оригинальной схемы фильтра


На частоте раздела горбы, которые в сумме дают 6 дБ, что, я считаю, слишком много.
Я думал, что установки подстроечного резистора R5 (на плате предусмотрел отверстия под подстроечный и постоянный резисторы), будет достаточно для настройки. Вот что получается при уменьшении R5.


Частота раздела сдвигается вверх, горб растет. Простое увеличение R5 не решает проблему, увы. Пришлось отойти от рекомендаций первоисточника и взяться за R4. Получилось!


Неравномерность около 1 дБ. При увеличении R5 частота раздела ползёт вниз, неравномерность уменьшается. При R4=12 кОм R5=54 кОм получаем.


Практически прямая линия суммарной АЧХ , всё отлично!

Забыл сказать, что я и 0 дБ – это ноль, общее усиление системы около -1 дБ (минус 13%), небольшая волнообразность ниже 40 Гц из-за примененного усилителя на К174УН14, ею можно пренебречь. Недостаток – частота раздела стала 63 Гц вместо 150. Отсюда я сделал вывод, что надо установить конденсаторы мЕньшей ёмкости, в плате я предусмотрел отверстия для них, и заново произвести настройку.

Тем не менее, результат, особенно для испытаний меня устроил. По результатам испытаний я решу, стоит ли ловить блох в 1 дБ и стоит ли сама идея активных фильтров свеч. Промежуточный результат для R4=13 кОм и R5=16 кОм.


В итоге я установил номиналы деталей, как на схеме, вот что получилось. Частота раздела в норме, но неравномерность несколько возросла.

Без настройки впаял детали в другой канал, идентичность очень неплохая. Конденсаторы перед установкой я отбирал с точностью примерно 5%, резисторы не подбирал.

Уровень сигнала в СЧ-ВЧ канале больше примерно на 0,7 дБ, при суммировании я это учитывал. Окончательное выравнивание будет в оконечных усилителях.
Повторюсь, крутизна фильтров для СЧ-ВЧ небольшая, возможно, есть смысл в добавке конденсатора последовательно с СЧ-ВЧ головками, это покажет прослушивание.

Планы

На очереди изготовление и испытания фильтров Linkwitz-Riley 4-го порядка. Количество микросхем и сложность настройки на порядок больше, но есть возможность более тонкой подгонки под конкретные АС.

Файлы

Если найдутся желающие повторить конструкцию, привожу плату в формате lay.

С целью снижения интермодуляционных искажений при звуковоспроизведении громкоговорители Hi-Fi систем составляют из низкочастотных, среднечастотных и высокочастотных динамических головок. Их подключают к выходам усилителей через разделительные фильтры, представляющие собой комбинации LC фильтров нижних и верхних частот.

Ниже приведена методика расчета трехполосного разделительного фильтра по наиболее распространенной схеме.

Частотная характеристика разделительного фильтра трехполосного громкоговорителя в общем виде показана на рис. 1. Здесь: N - относительный уровень напряжения на звуковых катушках головок: fн и fв - нижняя и верхняя граничные частоты воспроизводимой громкоговорителем полосы; fр1 и fр2 - частоты раздела.

В идеальном случае выходная мощность на частотах раздела должна распределяться поровну между двумя головками. Это условие выполняется, если на частоте раздела относительный уровень напряжения, поступающего на соответствующую головку, снижается на 3 дБ по сравнению с уровнем в средней части ее рабочей полосы частот.

Частоты раздела следует выбирать вне области наибольшей чувствительности уха (1... 3 кГц). При невыполнении этого условия, из-за разности фаз колебаний, излучаемых двумя головками на частоте раздела одновременно, может быть заметно "раздвоение" звука. Первая частота раздела обычно лежит в интервале частот 400... 800 Гц, а вторая - 4... 6 кГц. При этом низкочастотная головка будет воспроизводить частоты в диапазоне fн...fp1. среднечастотная - в диапазоне fp1... fр2 и высокочастотная - в диапазоне fр2...fв.

Один из распространенных вариантов электрической принципиальной схемы трехполосного громкоговорителя приведен на рис. 2. Здесь: B1 - низкочастотная динамическая головка, подключенная к выходу усилителя через фильтр нижних частот L1C1; В2 - среднечастотная головка, соединенная с выходом усилителя через полосовой фильтр, образованный фильтрами верхних частот C2L3 и нижних частот L2C3. На высокочастотную головку В3 сигнал подается через фильтры верхних частот C2L3 и C4L4.

Расчет емкостей конденсаторов и индуктивностей катушек производят исходя из номинального сопротивления головок громкоговорителя. Поскольку номинальные сопротивления головок и номинальные емкости конденсаторов образуют ряды дискретных значений, а частоты раздела могут варьироваться в широких пределах, то расчет удобно производить в такой последовательности. Задавшись номинальным сопротивлением головок, подбирают емкости конденсаторов из ряда номинальных емкостей (или суммарную емкость нескольких конденсаторов из этого ряда) такими, чтобы получившаяся частота раздела попадала в указанные выше частотные интервалы.

Тип конденсатора Емкость, мкФ
МБМ 0,6
МБГО, МВГП 1; 2; 4; 10
МБГП 15; 26
МБГО 20; 30

{mospagebreak}Емкости конденсаторов фильтров С1...С4 для различных сопротивлений головок и соответствующие значения частот раздела приведены в табл 2.

Zг,0м 4.0 4.5 5.0 6.5 8.0 12,5 15
С1,C2, мкф 40 30 30 20 20 15
fp1, Гц 700 840 790 580 700 - 520
С3,С4, мкф 5 5 4 4 3 2 1,5
fр2,кГц 5,8 5,2 5 4,4 4,8 4,6 5,4

Легко видеть, что все значения емкостей могут быть либо непосредственно взяты из номинального ряда емкостей. либо получены параллельным соединением не более чем двух конденсаторов (см. табл. 1).

После того как емкости конденсаторов выбраны, определяют индуктивности катушек в миллигенри по формулам:

В обеих формулах: Zг-в омах; fp1, fр2 - в герцах.

Поскольку полное сопротивление головки является частотнозависимой величиной, для расчета обычно принимают указанное в паспорте головки номинальное сопротивление Zг, оно соответствует минимальному значению полного сопротивления головки в диапазоне частот выше частоты основного резонанса до верхней граничной частоты рабочей полосы. При этом надо иметь в виду, что фактическое номинальное сопротивление различных образцов головок одного и того же типа может отличаться от паспортного значения на ±20%.

В некоторых случаях радиолюбителям приходится использовать в качестве высокочастотных головок имеющиеся динамические головки с номинальным сопротивлением, отличающимся от номинальных сопротивлений низкочастотной и высокочастотной головок. При этом согласование сопротивлений осуществляют, подключая высокочастотную головку В3 и конденсатор С4 к различным выводам катушки L4 (рис. 2), т. е. эта катушка фильтра играет одновременно роль согласующего автотрансформатора. Катушки можно намотать на круглых деревянных, пластмассовых или картонных каркасах с щечками из гетинакса. Нижнюю щечку следует сделать квадратной; так ее удобно крепить к основанию - гетинаксовой плате, на которой крепят конденсаторы и катушки. Плату крепят шурупами ко дну ящика громкоговорителя. Во избежание дополнительных нелинейных искажений катушки должны выполняться без сердечников из магнитных материалов.

Пример расчета фильтра.

В качестве низкочастотной головки громкоговорителя используется динамическая головка 6ГД-2, номинальное сопротивление которой Zг=8 Ом. в качестве среднечастотной - 4ГД-4 с таким же значением Zг и в качестве высокочастотной - ЗГД-15, для которой Zг=6,5 Ом. Согласно табл. 2 при Zг=8 Ом и емкости С1=С2=20 мкф fp1=700 Гц, а при емкости С3=С4=3 мкф fр2=4,8 кГц. В фильтре можно применить конденсаторы МБГО со стандартными емкостями (С3 и С4 составляют из двух конденсаторов).

По приведенным выше формулам находим: L1=L3=2,56 мГ; L2=L4=0,375 мГ (для автотрансформатора L4 - это значение индуктивности между выводами 1-3).

Коэффициент трансформации автотрансформатора

На рис. 3 показана зависимость уровня напряжения на звуковых катушках головок от частоты для трехполосной системы, соответствующей примеру расчета. Амплитудно-частотные характеристики низкочастотной, среднечастотной и высокочастотной областей фильтра обозначены соответственно НЧ, СЧ и ВЧ. На частотах раздела затухание фильтра равно 3,5 дБ (при рекомендуемом затухании 3 дБ).

Отклонение объясняется отличием полных сопротивлений головок и емкостей конденсаторов от заданных (номинальных) значений и индуктивностей катушек от полученных расчетом. Крутизна спада кривых НЧ и СЧ составляет 9 дБ на октаву и кривой ВЧ - 11 дБ на октаву. Кривая ВЧ соответствует несогласованному включению громкоговорителя 1 ГД-3 (в точки 1-3). Как видно, в этом случае фильтр вносит дополнительные частотные искажения.

Примечание от авторов:

В приводимой методике расчета принято, что среднее звуковое давление при одной и той же подводимой электрической мощности для всех головок имеет примерно одинаковое значение. Вели же звуковое давление, создаваемое какой-либо головкой, заметно больше, то для выравнивания частотной характеристики громкоговорителя по звуковому давлению эту головку рекомендуется подключать к фильтру через делитель напряжения, входное сопротивление которого должно быть равно принятому при расчете номинальному сопротивлению головок.

РАДИО N 9, 1977 г., с.37-38 E. ФРОЛОВ, г. Москва

Юрий Садиков
г. Москва

В статье приведены результаты работ по созданию устройства, представляющего собой комплект активных фильтров для построения высококачественных трехполосных усилителей низкой частоты классов HiFi и HiEnd.

В процессе предварительных исследований суммарной АЧХ трехполосного усилителя, построенного с использованием трех активных фильтров второго порядка, выяснилось, что эта характеристика при любых частотах стыков фильтров обладает весьма высокой неравномерностью. При этом она весьма критична к точности настройки фильтров. Даже при небольшом рассогласовании неравномерность суммарной АЧХ может составить 10…15 дБ!

МАСТЕР КИТ выпускает набор NM2116, из которого можно собрать комплект фильтров, построенный на базе двух фильтров и вычитающего сумматора, не имеющий вышеперечисленных недостатков. Разработанное устройство малочувствительно к параметрам частот среза отдельных фильтров и при этом обеспечивает высоколинейную суммарную АЧХ.

Основными элементами современной высококачественной звуковоспроизводящей аппаратуры являются акустические системы (АС).

Самыми простыми и дешевыми являются однополосные АС, имеющие в своем составе один громкоговоритель. Такие акустические системы не способны с высоким качеством работать в широком диапазоне частот в силу использования одного громкоговорителя (головка громкоговорителя - ГГ). При воспроизведении разных частот к ГГ предъявляются различные требования. На низких частотах (НЧ) динамик должен обладать большим и жестким диффузором, низкой резонансной частотой и иметь большой ход (для прокачки большого объема воздуха). А на высоких частотах (ВЧ) наоборот – необходим небольшой легкий но твердый диффузор с малым ходом. Все эти характеристики совместить в одном громкоговорителе практически невозможно (несмотря на многочисленные попытки), поэтому одиночный громкоговоритель имеет высокую частотную неравномерность. Кроме этого в широкополосных громкоговорителях существует эффект интермодуляции, который проявляется в модуляции высокочастотных компонент звукового сигнала низкочастотными. В результате звуковая картина нарушается. Традиционным решением этой проблемы является разделение воспроизводимого диапазона частот на поддиапазоны и построение акустических систем на базе нескольких динамиков на каждый выбранный частотный поддиапазон.

Пассивные и активные разделительные электрические фильтры

Для снижения уровня интермодуляционных искажений перед громкоговорителями устанавливаются электрические разделительные фильтры. Эти фильтры также выполняют функцию распределения энергии звукового сигнала между ГГ. Их рассчитывают на определенную частоту разделения, за пределами которой фильтр обеспечивает выбранную величину затухания, выражаемую в децибелах на октаву. Крутизна затухания разделительного фильтра зависит от схемы его построения. Фильтр первого порядка обеспечивазатухание 6 дБ/окт, второго порядка - 12 дБ/окт, а третьего порядка - 18 дБ/окт. Чаще всего в АС используются фильтры второго порядка. Фильтры более высоких порядков применяются в АС редко из-за сложной реализации точных значений элементов и отсутствия потребности иметь более высокие значения крутизны затухания.

Частота разделения фильтров зависит от параметров применяемых ГГ и от свойств слуха. Наилучший выбор частоты разделения - при котором каждый ГГ АС работает в пределах области поршневого действия диффузора. Однако при этом АС должна иметь много частот разделения (соответственно ГГ), что значительно увеличивает ее стоимость. Технически обосновано, что для качественного звуковоспроизведения достаточно применять трехполосное разделение частот. Однако на практике существуют 4-х, 5-и и даже 6-и полосные акустические системы. Первую (низкую) частоту разделения выбирают в диапазоне 200…400 Гц, а вторую (среднюю) частоту разделения в диапазоне 2500...4000 Гц.

Традиционно фильтры изготавливаются с применением пассивных L, C, R элементов, и устанавливаются непосредственно на выходе оконечного усилителя мощности (УМ) в корпусе АС, согласно рис.1.

Рис.1. Традиционное исполнение АС.

Однако у подобного исполнения существует ряд недостатков. Во первых, для обеспечения необходимых частот среза приходится работать с достаточно большими индуктивностями, поскольку необходимо выполнить одновременно два условия – обеспечить необходимую частоту среза и обеспечить согласование фильтра с ГГ (иными словами нельзя уменьшить индуктивность за счет увеличения емкости, входящей в состав фильтра). Намотку катушек индуктивности желательно производить на каркасах без применения ферромагнетиков из-за существенной нелинейности их кривой намагниченности. Соответственно, воздушные катушки индуктивности получаются достаточно громоздкими. Кроме всего существует погрешность намотки, которая не позволяет обеспечить точно рассчитанную частоту среза.

Провод, которым ведется намотка катушек, обладает конечным омическим сопротивлением, что в свою очередь, приводит к уменьшению КПД системы в целом и преобразованием части полезной мощности УМ в тепло. Особенно заметно это проявляется в автомобильных усилителях, где питающее напряжение ограничено 12 В. Поэтому для построения автомобильных стереосистем часто применяют ГГ пониженного сопротивления обмотки (~2…4 Ом). В такой системе введение дополнительного сопротивления фильтра порядка 0,5 Ом может привести к уменьшению выходной мощности на 30%…40%.

При проектировании высококачественного усилителя мощности стараются свести к минимуму его выходное сопротивление для увеличения степени демпфирования ГГ. Применение пассивных фильтров заметно снижает степень демпфирования ГГ, поскольку последовательно с выходом усилителя подключается дополнительное реактивное сопротивление фильтра. Для слушателя это проявляется в появлении "бубнящих" басов.

Эффективным решением является использование не пассивных, а активных электронных фильтров, в которых все перечисленные недостатки отсутствуют. В отличие от пассивных фильтров, активные фильтры устанавливается до УМ как показано на рис.2.

Рис.2. Построение звуковоспроизводящего тракта с использованием активных фильтров.

Активные фильтры представляют собой RC фильтры на операционных усилителях (ОУ). Несложно построить активные фильтры звуковых частот любого порядка и с любой частотой среза. Расчет подобных фильтров производится по табличным коэффициентам с заранее выбранным типом фильтра, необходимым порядком и частотой среза.

Использование современных электронных компонентов позволяет изготавливать фильтры, обладающие минимальными значениями уровней собственных шумов, малым энергопотреблением, габаритами и простотой исполнения/повторения. В результате, использование активных фильтров приводит к увеличению степени демпфирования ГГ, снижает потери мощности, уменьшает искажения и увеличивает КПД звуковоспроизводящего тракта в целом.

К недостаткам такой архитектуры относится необходимость использования нескольких усилителей мощности и нескольких пар проводов для подключения акустических систем. Однако в настоящее время это не является критичным. Уровень современных технологий значительно снизил цену и размеры УМ. Кроме того, появилось достаточно много мощных усилителей в интегральном исполнении с отличными характеристиками, даже для профессионального применения. На сегодняшний день существует ряд ИМС с несколькими УМ в одном корпусе (фирма Panasonic выпускает ИМС RCN311W64A-P с 6-ю усилителями мощности специально для построения трехполосных стереосистем). Кроме того УМ можно расположить внутри АС и использовать короткие провода большого сечения для подключения динамиков, а входной сигнал подать по тонкому экранированному кабелю. Однако, если даже не удается установить УМ внутри АС, применение многожильных соединительных кабелей не представляет собой сложную проблему.

Моделирование и выбор оптимальной структуры активных фильтров

При построении блока активных фильтров было решено использовать структуру состоящую из фильтра высокой частоты (ФВЧ), фильтра средней частоты (полосовой фильтр, ФСЧ) и фильтра низкой частоты (ФНЧ).

Это схемотехническое решение было практически реализовано. Был построен блок активных фильтров НЧ, ВЧ и ПФ. В качестве модели трехполосной АС был выбран трехканальный сумматор, обеспечивающий суммирование частотных компонент, согласно рис.3.

Рис.3. Модель трехканальной АС с набором активных фильтров и ФСЧ на ПФ.

При снятии АЧХ такой системы, при оптимально подобранных частотах среза, ожидалось получить линейную зависимость. Но результаты оказались далеки от предполагаемых. В точках сопряжения характеристик фильтров наблюдались провалы/выбросы в зависимости от соотношения частот среза соседних фильтров. В итоге подбором значений частот среза не удалось привести проходную АЧХ системы к линейному виду. Нелинейность проходной характеристики свидетельствует о наличии частотных искажений в воспроизводимом музыкальном оформлении. Результаты эксперимента представлены на рис.4, рис.5 и рис.6. Рис.4 иллюстрирует сопряжение ФНЧ и ФВЧ по стандартному уровню 0.707. Как видно из рисунка в точке сопряжения результирующая АЧХ (показана красным цветом) имеет существенный провал. При раздвижении характеристик глубина и ширина провала увеличивается, соответственно. Рис.5 иллюстрирует сопряжение ФНЧ и ФВЧ по уровню 0.93 (сдвижка частотных характеристик фильтров). Эта зависимость иллюстрирует минимально достижимую неравномерность проходной АЧХ, путем подбора частот среза фильтров. Как видно из рисунка, зависимость явно не линейна. При этом частоты среза фильтров можно считать оптимальными для данной системы. При дальнейшем сдвиге частотных характеристик фильтров (сопряжение по уровню 0.97) наблюдается появление выброса в проходной АЧХ в точке стыка характеристик фильтров. Подобная ситуация показана на рис.6.

Рис.4. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.707.

Рис.5. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.93.

Рис.6. АЧХ ФНЧ (черный), АЧХ ФВЧ (черный) и проходная АЧХ (красный), согласование по уровню 0.97 и появление выброса.

Основной причиной нелинейности проходной АЧХ является наличие фазовых искажений на границах частот среза фильтров.

Решить подобную проблему позволяет построение среднечастотного фильтра не в виде полосового фильтра, а с использованием вычитающего сумматора на ОУ. Характеристика такого ФСЧ формируется в соответствии с формулой: Uсч = Uвх – Uнч - Uвч

Структура такой системы представлена на рис.7.

Рис.7. Модель трехканальной АС с набором активных фильтров и ФСЧ на вычитающем сумматоре.

При таком способе формирования канала средних частот пропадает необходимость в точной настройке соседних частот среза фильтров, т.к. среднечастотный сигнал формируется вычитанием из полного сигнала сигналов фильтров высоких и низких частот. Кроме обеспечения взаимодополняющих АЧХ, у фильтров получаются так же и комплементарные ФЧХ, что гарантирует отсутствие выбросов и провалов в суммарной АЧХ всей системы.

АЧХ среднечастотного звена с частотами среза Fср1 = 300 Гц и Fср2 = 3000 Гц приведена на рис. 8. По спаду АЧХ обеспечивается затухание не более 6 дБ/окт, что, как показывает практика, вполне достаточно для практической реализации ФСЧ и получения качественного звучания СЧ ГГ.

Рис.8. АЧХ фильтра средних частот.

Проходной коэффициент передачи такой системы с ФНЧ, ФВЧ и ФСЧ на вычитающем сумматоре получается линейным во всем диапазоне частот 20 Гц…20 кГц, согласно рис. 9. Полностью отсутствуют амплитудные и фазовые искажения, что обеспечивает кристальную чистоту воспроизводимого звукового сигнала.

Рис.9. АЧХ системы фильтров с ФСЧ на вычитающем сумматоре.

К недостаткам подобного решения можно отнести жесткие требования к точности номиналов резисторов R1, R2, R3 (согласно рис.10, на котором представлена электрическая схема вычитающего сумматора) обеспечивающих балансировку сумматора. Эти резисторы должны использоваться с допусками на точность не более 1%. Однако при возникновении проблем с приобретением таких резисторов потребуется сбалансировать сумматор используя вместо R1, R2 подстроечные резисторы.

Балансировка сумматора выполняется по следующей методике. Сначала на вход системы фильтров необходимо подать низкочастотное колебание с частотой, намного ниже частоты среза ФНЧ, например 100 Гц. Изменяя значение R1 необходимо установить минимальный уровень сигнала на выходе сумматора. Затем на вход системы фильтров подается колебание с частотой заведомо большей частоты среза ФВЧ, например 15 кГц. Изменяя значение R2 опять устанавливают минимальный уровень сигнала на выходе сумматора. Настройка закончена.

Рис.10. Схема вычитающего сумматора.

Методика расчета активных ФНЧ и ФВЧ

Как показывает теория для фильтрации частот звукового диапазона необходимо применять фильтры Баттерворта не более второго или третьего порядка, обеспечивающие минимальную неравномерность в полосе пропускания.

Схема ФНЧ второго порядка представлена на рис. 11. Его расчет производится по формуле:

где a1=1.4142 и b1=1.0 - табличные коэффициенты, а С1 и С2 выбираются из соотношения C2/C1 больше равно 4xb1/a12, причем не следует выбирать отношение C2/C1 много большим правой части неравенства.

Рис.11. Схема ФНЧ Баттерворта 2-го порядка.

Схема ФВЧ второго порядка представлена на рис. 12. Его расчет производится по формулам:

где C=C1=C2 (задаются перед расчетом), а a1=1.4142 и b1=1.0 - те же табличные коэффициенты.

Рис.12. Схема ФВЧ Баттерворта 2-го порядка.

Специалисты МАСТЕР КИТ разработали и исследовали характеристики такого блока фильтров, обладающего максимальной функциональностью и минимальными габаритами, что является существенным при применении устройства в быту. Использование современной элементной базы позволило обеспечить максимальное качество разработке.

Технические характеристики блока фильтров

Принципиальная электрическая схема активного фильтра показана на рис.13. Перечень элементов фильтра приведен в таблице.

Фильтр выполнен на четырех операционных усилителях. ОУ объединены в одном корпусе ИМС MC3403 (DA2). На DA1 (LM78L09) собран стабилизатор питающего напряжения с соответствующими фильтрующими емкостями: С1, С3 по входу и С4 по выходу. На резистивном делителе R2, R3 и конденсаторе С5 выполнена искусственная средняя точка.

На ОУ DA2.1 выполнен буферный каскад сопряжения выходного и входных сопротивлений источника сигнала и фильтров НЧ, ВЧ и СЧ. На ОУ DA2.2 собран фильтр НЧ, на ОУ DA2.3 - фильтр ВЧ. ОУ DA2.4 выполняет функцию формирователя полосового СЧ фильтра.

На контакты X3 и X4 подается напряжение питания, на контакты X1, X2 - входной сигнал. С контактов X5, X9 снимается отфильтрованный выходной сигнал для тракта НЧ; с X6, X8 – ВЧ и с X7, X10 – СЧ трактов соответственно.

Рис.13. Схема электрическая принципиальная активного трехполосного фильтр

Перечень элементов активного трехполосного фильтра

Позиция Наименование Примечание Кол.
С1, С4 0,1 мкФ Обозначение 104 2
C2, С10, C11, C12, C13, C14, C15 0,47 мкФ Обозначение 474 7
С3, C5 220 мкФ/16 В Замена 220 мкФ/25 В 2
С6, C8 1000 пФ Обозначение 102 2
С7 22 нФ Обозначение 223 1
С9 10 нФ Обозначение 103 1
DA1 78L09 1
DA1 MC3403 Замена LM324, LM2902 1
R1…R3 10 кОм 3
R8…R12 10 кОм Допуск не более 1%* 5
R4…R6 39 кОм 3
R7 75 кОм - 1
Колодка DIP-14 1
Штыревой разъем 2-х контактный 2
Штыревой разъем 3-х контактный 2

Внешний вид фильтра показан на рис.14, печатная плата – на рис.15, расположение элементов – на рис.16.

Конструктивно фильтр выполнен на печатной плате из фольгированного стеклотекстолита. Конструкция предусматривает установку платы в стандартный корпус BOX-Z24A, для этого предусмотрены монтажные отверстия по краям платы диаметром 4 и 8 мм. Плата в корпусе крепится двумя винтами-саморезами.

Рис.14. Внешний вид активного фильтра.

Рис.15. Печатная плата активного фильтра.

Рис.16. Расположение элементов на печатной плате активного фильтра.

Валентин и Виктор ЛЕКСИНЫ======

Вопрос, поставленный авторами в заголовке статьи, вообще говоря, не нов. Во времена ламповой техники двухполосные усилители НЧ были не редкостью. Предпочтение, отдавав­шееся таким усилителям, кроме умень­шения интермодуляционных искаже­ний, обусловливалось в значительной степени трудностями изготовления широкополосных выходных трансфор­маторов, согласующих усилительный тракт с громкоговорителем.

Пришедшие на смену лампам тран­зисторы сняли проблемы выходного трансформатора и за довольно корот­кое время позволили создать широко­полосные усилители с весьма высоки­ми характеристиками: рабочим диа­пазоном частот от единиц герц до десятков килогерц, коэффициентом гармоник порядка сотых и даже тысяч­ных долей процента и т. д. В результа­те у многих радиолюбителей и специа­листов сложилось мнение, что чуть ли не единственный путь к достижению высококачественного звуковоспроизве­дения - это дальнейшее совершенст­вование широкополосного усилитель­ного тракта, создание усилителя с практически идеальными характеристи­ками. Однако, как убедительно дока­ зывают авторы статьи, этот путь не самый простой и, главное, не самый зффективный.

Верность звучания во многом зави­сит от громкоговорителя. А здесь до­стижения более скромны, чем в схемо­технике усилителей. Широкополосных головок, одинаково хорошо преобра­зующих электрические колебания в звуковые во всем диапазоне частот, притом с малыми нелинейными и ин­термодуляционными искажениями, по­ка что нет, а многополосным громко­говорителям свойствен ряд существен­ных недостатков, обусловленных при- менеюгем в них пассивных раздели­тельных фильтров. В этой ситуации су­щественно улучшить качество звуко­воспроизведения можно только при использовании многополосного усили­теля с разделительными фильтрами иа входе.

Особо следует отметить и такое, по­ка что еще очень важное для радиолю­бителей преимущество многополос­ных усилителей, как возможность их изготовления из доступных деталей.

Описание любительского трехполос­ного усилителя мощности редакция намечает опубликовать в одном из сле­дующих номеров журнала.

Приступая к разработке высоко­качественного звуковоспроизво­дящего комплекса, радиолюби­тели нередко сосредоточивают все вни­мание на достижении близких к идеаль­ным параметров электрического тракта, в частности такого его звена, как широкополосный усилитель мощности. Стремление получить минимальные ис­кажения всех видов при сравнительно большой (несколько десятков ватт) выходной мощности и достаточном за­пасе устойчивости приводит обычно к созданию сложных как в схемном, так и в конструктивном отношении устройств. Тем не менее даже с таким усилителем мощности качество звуко­воспроизведения во многих случаях получается недостаточно высоким. При­чина здесь - в игнорировании того в общем-то известного факта, что ка­чество звучания во многом определяет­ся параметрами громкоговорителя. По­лученные при испытаниях на чисто активной нагрузке высокие параметры усилителя часто не реализуются при согласовании с громкоговорителем. Именно поэтому одной из важнейших задач становится схемотехническое усо­вершенствование усилителя мощности для улучшения его согласования с гром­коговорителем.

Проблем здесь несколько. Одна из них - необходимость хорошего элек­трического демпфирования подвижной системы низкочастотной динамической головки громкоговорителя. Только при выполнении этого условия воспроизве­денный ею звуковой импульс будет иметь те же форму и длительность, что и электрический. Хорошо демпфиро­ванный громкоговоритель почти безы­нерционно возбуждается электриче­ским сигналом и прекращает излучение звуковых колебаний сразу после его окончания. При недостаточном демпфи­ровании подвижная система головки продолжает колебаться еще некоторое время и после снятия сигнала, но уже не с его частотой, а с частотой собствен­ного резонанса. В результате возникает неравномерность АЧХ громкоговори­теля по звуковому давлению. На слух это воспринимается как характерное «бубнение».

Для ускорения затухания свободных колебаний подвижной системы головки обычно используют шунтирование зву­ковой катушки малым выходным сопро­тивлением усилителя мощности. Но здесь-то и возникает проблема - вклю­чение пассивных разделительных филь­тров между выходом усилителя и дина­мическими головкамн многополосного громкоговорителя ухудшает электри­ческое демпфирование.

Другая проблема - в трудности соз­дания разделительных фильтров, к ко­торым предъявляются требования высо­кой крутизны скатов АЧХ звеньев, ма­лой неравномерности суммарной АЧХ и линейности ФЧХ в полосе пропуска­ния. Первое из этих требований обу­словлено резким ухудшением характе­ристик динамических головок на краях их номинальных диапазонов частот. Особенно это относится к средне- и высокочастотным головкам, у которых перекрытие номинальных диапазонов воспроизводимых частот, как правило, сравнительно невелико. Именно поэто­му разделительные фильтры для этих головок должны обладать АЧХ с кру­тыми скатами: при октавном (относи­тельно частоты раздела соседних полос) запасе по номинальному диапазону воспроизводимых частот необходимо применять фильтры с крутизной ската АЧХ не менее 12 дБ на октаву. Простейшие фильтры с крутизной 6 дБ на октаву можно использовать лишь в том случае, если запас по частоте составляет не менее двух октав.

Следует иметь в виду, что не все фильтры с высокой крутизной скатов АЧХ обеспечивают малую неравномер­ность суммарной АЧХ. С этой точки зрения наиболее подходят для приме­нения в многополосных громкоговори­телях так называемые фильтры Баттерворта первого (крутизна 6 дБ на октаву) и третьего (18 дБ на октаву) порядков, сопряженные по уровню -3 дБ (0,707). Часто используемые фильтры этого типа второго порядка (12 дБ на октаву) имеют недостаток: при синфазном включении соседних по частоте динамических головок в сум­марной АЧХ появляется провал до нуля, а при противофазном - выброс на 3 дБ.

Типовые разделительные фильтры даже с ровной суммарной АЧХ нередко являются причиной возникновения фа­зовых искажений, влияние которых на форму выходного сигнала особенно проявляется вблизи частоты раздела fр. Это наглядно видно из рис. 1, где показаны изменения, которые претерпевает сигнал в виде симмет­ричных прямоугольных импульсов дли­тельностью, примерно равной 1/f р, пройдя через разделительный фильтр с нелинейной суммарной ФЧХ (рис. 1,г). Если на частоте раздела средне-и высо­кочастотной полос эти искажения до­пустимы, так как мало сказываются на качестве звучания, то в области частот раздела средне- и низкочастотной полос их желательно устранить, поскольку именно здесь сосредоточены наиболь­шие среднестатические уровни реаль­ного сигнала, и к тому же чувствитель­ность слуха максимальна.

Для неискаженной передачи сигна­лов импульсного характера, кроме ров­ной суммарной АЧХ, необходимо обес­печить одинаковую временную задерж­ку t з всех составляющих сигнала при прохождении через разделительный фильтр. Форма выходного импульсного сигнала для фильтра с линейной сум­марной ФЧХ (ее, в частности, можно получить, используя фильтры первого порядка) показана на рис 1. д.

Не менее важной проблемой при со­гласовании усилителя мощности с гром­коговорителем являются интерферен­ционные искажения звукового поля в зоне прослушивания, неизбежные при воспроизведении двумя головками ко­ лебаний в общей полосе частот. Если в одной полосе частот работают не­сколько головок, то для уменьшения интерференционных искажений в гори­зонтальной плоскости их необходимо расположить на одной вертикальной линии. Интерференция в вертикальной плоскости скажется на качестве зву­чания меньше, если головки разместить на уровне головы слушателя и повозможности ближе одну к другой. К со­жалению, полностью избавиться от по­добных искажений не всегда удается даже при использовании в каждой по­лосе частот всего по одной головке. В этом случае интерференция возникает в области частоты раздела, где сигналы, излучаемые, например, средне- и низко­частотной головками, близки по уровню. Интерференционные искажения отчет­ливо слышны при перемещении слуша­теля относительно громкоговорителя, излучающего синусоидальный сигнал, частота которого находится в области частоты раздела полос.

Для уменьшения влияния интерфе­ренции. помимо соблюдения электри­ческой полярности сигналов, целесооб­разно размещать все головки громко­говорителя на одной вертикальной ли­нии возможно ближе одну к другой и стремиться к тому, чтобы их звуковые катушки находились в одной фронталь­ной плоскости. Если по тем или иным причинам смещать головки в глубину корпуса громкоговорителя нежелатель­но, следует выбрать частоту раздела низко- и среднечастотной полос не­высокой. В этом случае взаимные фа­зовые сдвиги излучаемых головками колебаний будут достаточно малы н на качестве звучания скажутся меньше. Что касается фазовых сдвигов в об­ласти частоты раздела средне- и высоко­частотной полос, то бороться с ними значительно сложнее. Тем не менее их влияние на качество зву­чания можно ослабить, применив филь­тры с большой крутизной скатов АЧХ и выбрав частоту раздела достаточно высокой, т. е. вне диапазона среднестатического распределения наиболь­ших уровней звукового сигнала и наи­большей чувствительности слуха.

Все рассмотренные проблемы реша­ются проще и с лучшим эффектом при использовании многополосных усили­телей мощности с активными RC -фильтрами на входе вместо пассивных филь­тров, применяемых в громкоговорите­лях, предназначенных для работы с ши­рокополосным усилителем. К сожале­нию, среди радиолюбителей распростра­нено мнение, что, например, трехполос­ный усилитель мощности, втрое слож­нее и дороже однополосного. Но, если говорить о действительно высококачест­венном звуковоспроизведении, это да­леко не так, в чем нетрудно убедиться, если проанализировать весь комплекс вопросов разработки высококачествен­ного звуковоспроизводящего комплек­са с широкополосным усилителем мощ­ности. В самом деле, кроме недостатков, вытекающих из сказанного выше,- сложность расчета и построения пассив­ных разделительных фильтров выше первого порядка с равномерной сум­марной АЧХ и линейной ФЧХ, слож­ность согласования каждой из голо­вок громкоговорителя с выходом уси­лителя для получения равномерной суммарной АЧХ по звуковому давлению (используемые иногда для этой цели резистивные делители снижают КПД комплекса и ухудшают демпфирование), снижение степени демпфирования низ­ко- и среднечастотной головок из-за включения активной составляющей фильтра последовательно с низкоомной звуковой катушкой, потери мощности в пассивном фильтре и, наконец, необхо­димость изготовления крупногабарит­ных катушек индуктивности и приобре­тения конденсаторов большой емкости для разделительного фильтра, - одно­полосному усилению свойственен и такой недостаток, как необходимость иметь большой запас по выходной мощности. Дело в том, что реальный максимально допустимый уровень низко- и среднечастотных составляющих при воспроиз­ведении звуковой программы оказыва­ется значительно меньшим,чем получен­ный при налаживании усилителя по си­нусоидальному сигналу.

Наложенные на составляющие низких частот средне- и высокочастотные составляющие пер­выми достигают границ динамического диапазона усилителя мощности, и для того, чтобы они были воспроизведены без ограничения, однополосный усили­тель должен иметь примерно двойной (по сравнению с многополосным) за­пас выходной мощности. Важно также, чтобы однополосный усилитель имел малые интермодуляционные и так на­зываемые динамические интермодуля­ционные искажения.Для уменьшения последних приходится ограничивать глубину общей ООС, а это приводит к росту нелинейных искажений, ухуд­шению степени демпфирования громкоговорителя (из-за увеличения выход­ного сопротивления усилителя). Устра­нение этих недостатков приводит к зна­ чительному усложнению усилителя. На­конец, применение в широкополосном усилителе ЭМОС требует (для обеспе­чения устойчивости) введения RC -цепи, ограничивающей диапазон ее действия. Для компенсации возникающего при этом подъема АЧХ на низших частотах требуется дополнительная частотная коррекция усилителя мощности.

Указанные недостатки проявляются значительно слабее, а некоторые из них полностью отсутствуют в многопо­лосных усилителях мощности с актив­ными разделительными фильтрами на входе. Простые расчеты показывают, что по сравнению с одним (широко­полосным) усилителем многополосный при той же выходной мощности поз­воляет использовать более низкое на­пряжение питания. Следствием этого являются уменьшение габаритов усили­теля (благодаря использованию срав­нительно небольших по размерам низ­ковольтных электролитических конден­саторов в фильтре выпрямителя и для связи с нагрузкой, а также меньшим размерам теплоотводов транзисторов оконечных каскадов), увеличение его КПД, более широкие возможности вы­бора (по напряжению эмиттер - кол­лектор и частотным параметрам) всех транзисторов усилителя. В частности, в оконечном каскаде низкочастотного канала можно использовать недорогие германиевые транзисторы типов П210, П217 и т п, достоинство которых - малое напряжение насыщения эммитер - коллектор.

В многополосном усилителе мощ­ности разделительный фильтр ограни­чивает уровень высокочастотных со­ставляющих сигнала, поступающих на входы низко- и среднечастотного каналов, что отвечает известным рекоменда­циям по уменьшению динамических ннтермодуляцнонных искажений. В то же время высокочастотный канал имеет большой запас линейности амплитуд­ной характеристики, так как после ФВЧ уровень высокочастотных составляю­щих в соответствии со статистикой ре­ального музыкального сигнала очень мал, и динамические искажения здесь практически не возникают. Благодаря этому во всех каналах можно использо­вать простые усилители мощности с глубокими ООС.

В многополосных усилителях нет потерь мощности в разделительных фильтрах, имеются широкие возможностн в реализации активных разделительных фильтров высоких порядков с равномерной суммарной АЧХ. Воз­можно построение фильтров выше пер­вого порядка с линейной суммарной ФЧХ. Благодаря непосредственному (без фильтра) подключению головок к выходу усилителя не возникает проблемы с их электрическим демпфиро­ванием и согласованием по уровню звукового давления в каждой полосе частот (последнее делают простой установкой требуемых коэффициентов усиления каждого из усилителей).

Принципиальная схема возможного варианта активного разделительного фильтра для трехполосного усилителя мощности показана на рис. 2.

Для раз­деления ннзко- и среднечастотной полос использованы ФНЧ и так называе­мый фильтр дополнительной функции (ФДФ) на транзисторе V1. Выходной сигнал этого фильтра представляет со­бой разность между входным сигналом и сигналом, прошедшим через ФНЧ. Достоинства такого способа разделения полос - простота настройки и стабиль­ность характеристик (вследствие их автоматического сопряжения), равно­мерные суммарные АЧХ и ФЧХ, а сле­довательно, и идеальное воспроизведе­ние импульсных сигналов; недостатки - малая крутизна ската АЧХ ФДФ (6 дБ на октаву независимо от порядка ис­пользуемого ФНЧ) и «выбросы» на ней вблизи частоты среза, если порядок ФНЧ выше первого. Для уменьшения «выбросов» сопротивления резисторов R1 , R 2 и емкость конденсаторов С1, С2 выбраны одинаковыми. Часто­та раздела

Для разде ления средне- и высоко­частотной полос применены ФНЧ и ФВЧ четвертого порядка. Каждый из них составлен из двух (на транзисто­рах V 2. V 3 и V 4, V 5) соединенных последовательно фильтров Баттерворта второго порядка. Частота раздела выбрана как среднегеометрическое ме­жду нижней границей номинального диапазона частот высокочастотной и верхней границей диапазона среднечастотной головок.

АЧХ зв еньев разделительного фильт­ра изображены на рис. 3. Суммарная АЧХ фильтра не имеет ни провалов, ни «выбросов». В области наибольших среднестатистических уровней сигнала и наибольшей чувствительности слуха суммарная ФЧХ линейна, что важно для хорошего воспроизведения импуль­сных сигналов.

При использовании резисторов и конденсаторов с допускаемым отклоне­нием от номинальных значений не бо­лее ±5% фильтр настройки не требу­ет. Группа ТКЕ конденсаторов CI , С2, С5-С12- М47, М75, М750, M1 500 (С1 и С2 - могут быть и группы Н30).

В разработанном авторами устройст­ве применен недорогой комплект дина­мических головок, тип и число кото­рых в каждой полосе выбирались из условия обеспечения равномерной сум­марной АЧХ по звуковому давлению при примерно одинаковом - для наи­более полного использования напряже­ния питания - выходном напряжении полосных усилителей мощности. В каж­дом стереоканале использованы одна низкочастотная головка 6ГД-2 (среднее стандартное звуковое давление Р срст = 0,3 Па, полное сопротивление звуко­вой катушки (Z) на частоте 1 кГц - 8 Ом, две параллельно включенные среднечастотные головки 2ГД-22 (Р срст =0,2 Па. |Z | =15 Ом) и две со единенные последовательно высокочас­тотные головки 1ГД-3 (Р срст =0,3 Па, \Z \ =12,5 Ом)

Звуковое давление Р на расстоянии l (в метрах) от геометрического цент­ра симметрии отверстия излучателя рассчитывалось по формуле

где Рэ - электрическая мощность в ват­тах. При возбуждении головок каждой полосы сигналом, соответствующим их номинальной мощности звуковые давления на расстоянии 1 м получились следующие:

В низкочастот­ной полосе (одна головка) - Р = 2,32 Па при 6,9 В; в среднечастотной (две головки) - Р=1,8 Па при 5,5 В; в высокочастотной (две головки) - Р -1,9 Па при 7 В. Для создания равномерного звукового давления пришлось уменьшить напря­жение, подводимое к низкочастотной головке до значения V = 6.9 х 1,8/2,32=5,4 В. включив последова­тельно с ней резистор цепи ПОС по току.

Для исключения взаимовлияния сред­не- и низкочастотной головок, облегче­ния борьбы с интерференционными ис­кажениями и обеспечения возможности поворота осей отдельных излучателей в горизонтальной плоскости было вы­брано акустическое оформление в виде трех поставленных друг на друга неза­висимых ящиков в каждом стереокана­ле. Громкоговоритель низкочастотной полосы - фазоинвертор. Его корпус с внешними размерами 345 х 295 х 635 мм изготовлен из древесностру­жечной плиты толщиной 20 мм. Все стенки, кроме передней, оклены изнутри рубероидом, поверх которого наклеены листы из пенополиуретана (поролона) толщиной 20 мм. Свободный внутрен­ний объем корпуса (без головки и тун­неля фазойнвертора - 36 дм 3 . Головка 6ГД-2 закреплена в верхней части пе­редней панели. Расстояние от центра ее диффузора до плоскости верхней стенки корпуса составляет 150, а до центра туннеля - 240 мм. Внутренний диаметр туннеля - 55, длина - 185 мм. Частота настройки - 30 Гц.

Акустическое оформление средне- и высокочастотного громкоговорите­лей - закрытые ящики из фанеры тол­щиной 8 мм с внешними размерами соответственно 310x250x210 и 95 х125x175 мм. Головки этих громко­говорителей установлены одна над другой. Корпус среднечастотного гром­коговорителя заполнен ватой.

С выходами полосных усилителей громкоговорители соединены короткими проводами большого сечения.

Благодаря разделению полос на вхо­де и использованию головок с хорошей отдачей оказалось возможным приме­нить сравнительно маломощные по­лосные усилители (6 Вт - на низких, 4 Вт - на средних и 2 Вт - на высоких частотах) при невысоком напряжении питания (±14 В). Каждый стереоканал обеспечивает уровень звукового давле­ния около 100 дБ на расстоянии 1 м от акустической системы. Качество зву­чания достаточно высокое.

Электронная часть описываемой си­стемы (два трехполосных стереоканала с активными фильтрами и теплоотводами транзисторов выходных каска­дов) выполнена в виде единого блока размерами 350x160x35 мм.

При использовании головок с мень­шим значением Р ср.ст выходную мощ­ность полосных усилителей для полу­чения того же уровня звукового давле­ния необходимо, естественно, увели­чить. Например, если для низкочастот­ной полосы выбрана головка 25ГД-26 (Р ср. ст =0,15 Па), то выходная мощ­ность соответствующего усилителя дол­жна быть не менее 24 Вт. Однако пре­имущества многополосного усиления мощности ощутимы и здесь, так как широкополосный усилитель (с учетом потерь в пассивном фильтре громко­говорителя и запаса мощности для не­искаженного воспроизведения всех со­ставляющих сигнала) в этом случае должен был бы обладать выходной мощностью вдвое большей (а это по­требовало бы увеличения напряжения питания и применения более дорогой элементной базы).

Итак, комплексное рассмотрение во­просов согласования усилителя мощ­ности с громкоговорителем показывает, что для достижения действительно вы­сококачественного звучания приходится идти на значительное усложнение широ­кополосного усилителя. Многополосные усилители в этом отношении значитель­но проще и, что очень важно для подав­ляющего большинства радиолюбите­лей, могут быть собраны из доступных деталей. Учитывая это. а также прини­мая во внимание тот факт, что высокие качественные показатели многополос­ных систем при воспроизведении реаль­ных сигналов можно получить значи­тельно проще, чем при использовании одного, широкополосного усилителя, можно сделать вывод, что затраты вре­мени и средств на изготовление много­полосной системы не превысят затрат на постройку широкополосного усили­теля с многополосиым громкоговори­телем.

г. Москва

ЛИТЕРАТУРА

Иофе В. К., Корольков В. Г., Сапожков М А.

Справочник по акустике. Пол общ. ред. М. А. Сапожкова М. Связь. 1979.

Эфрусси М. М Громкоговорители и их применение М, Энергия 076 |МРБ вып 919).

Левннзон Г Л, Логинов А. В. Высококачественный усилитель низкой частоты М Энергия 1977 (МРБ. вып 95П

Relnhard С . Auf dem Weg zumOptimaleu Laut sprechersystem.- Funkschau 1977. № 3 s 115- - 117 ы

Lautsprccherkomblnalioncn - eleklrl" Welchen, Phascnfehler.- Funkschau, 1978. H > я 969-972 Nt 24, s . 1209-1212

Салтыков О. ЭМОС или отрицательное а д мое сопротивление? - Радио, 1981. № l.c 41. "5